Search results for "Spectrum of a matrix"

showing 1 items of 1 documents

Lévy flights in an infinite potential well as a hypersingular Fredholm problem.

2016

We study L\'evy flights {{with arbitrary index $0< \mu \leq 2$}} inside a potential well of infinite depth. Such problem appears in many physical systems ranging from stochastic interfaces to fracture dynamics and multifractality in disordered quantum systems. The major technical tool is a transformation of the eigenvalue problem for initial fractional Schr\"odinger equation into that for Fredholm integral equation with hypersingular kernel. The latter equation is then solved by means of expansion over the complete set of orthogonal functions in the domain $D$, reducing the problem to the spectrum of a matrix of infinite dimensions. The eigenvalues and eigenfunctions are then obtained numer…

Quantum PhysicsMathematical analysisSpectrum (functional analysis)Orthogonal functionsFredholm integral equationEigenfunctionParticle in a boxMathematics::Spectral Theory01 natural sciences010305 fluids & plasmasSchrödinger equationMathematics - Spectral Theorysymbols.namesakeSpectrum of a matrix0103 physical sciencessymbols010306 general physicsEigenvalues and eigenvectorsCondensed Matter - Statistical MechanicsMathematical PhysicsMathematics - ProbabilityMathematicsPhysical review. E
researchProduct